Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(4): 403-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287148

RESUMO

For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise
2.
Nat Commun ; 14(1): 3126, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253751

RESUMO

Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 ß-subunit with attenuation of the complex's three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome's enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínio Catalítico , Regulação Alostérica , Proteólise , Proteoma/metabolismo
3.
Antioxid Redox Signal ; 32(9): 636-655, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31903784

RESUMO

Aims: The protein degradation machinery plays a critical role in the maintenance of cellular homeostasis, preventing the accumulation of damaged or misfolded proteins and controlling the levels of regulatory proteins. The 20S proteasome degradation machinery, which predominates during oxidative stress, is able to cleave any protein with a partially unfolded region, however, uncontrolled degradation of the myriad of potential substrates is improbable. This study aimed to identify and characterize the regulatory mechanism that controls 20S proteasome-mediated degradation. Results: Using a bioinformatic screen based on known 20S proteasome regulators, we have discovered a novel family of 20S proteasome regulators, named catalytic core regulators (CCRs). These regulators share structural and sequence similarities, and coordinate the function of the 20S proteasome by affecting the degradation of substrates. The CCRs are involved in the oxidative stress response via Nrf2, organizing into a feed-forward loop regulatory circuit, with some members stabilizing Nrf2, others being induced by Nrf2, and all of them inhibiting the 20S proteasome. Innovation and Conclusion: These data uncover a new family of regulatory proteins that utilize a fine-tuned mechanism to carefully modulate the activity of the 20S proteasome, in particular under conditions of oxidative stress, ensuring its proper functioning by controlling the degradative flux.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biologia Computacional , Humanos , Estresse Oxidativo , Proteólise
4.
Anal Chem ; 90(17): 10090-10094, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30106564

RESUMO

A powerful method to determine the energetic coupling between amino acids is double mutant cycle analysis. In this method, two residues are mutated separately and in combination and the energetic effects of the mutations are determined. A deviation of the effect of the double mutation from the sum of effects of the single mutations indicates that the two residues are interacting directly or indirectly. Here, we show that double mutant cycle analysis by native mass spectrometry can be carried out for interactions in crude Escherichia coli cell extracts, thereby obviating the need for protein purification and generating binding isotherms. Our results indicate that intermolecular hydrogen bond strengths are not affected by the more crowded conditions in cell lysates.


Assuntos
Proteínas de Escherichia coli/química , Espectrometria de Massas/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação de Hidrogênio , Mutação
5.
Anal Chem ; 89(8): 4398-4404, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345863

RESUMO

Determining the properties of proteins prior to purification saves time and labor. Here, we demonstrate a native mass spectrometry approach for rapid characterization of overexpressed proteins directly in crude cell lysates. The method provides immediate information on the identity, solubility, oligomeric state, overall structure, and stability, as well as ligand binding, without the need for purification.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas Recombinantes/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Escherichia coli/metabolismo , Humanos , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Solubilidade
6.
Anal Chem ; 89(8): 4708-4715, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345864

RESUMO

Protein complexes often represent an ensemble of different assemblies with distinct functions and regulation. This increased complexity is enabled by the variety of protein diversification mechanisms that exist at every step of the protein biosynthesis pathway, such as alternative splicing and post transcriptional and translational modifications. The resulting variation in subunits can generate compositionally distinct protein assemblies. These different forms of a single protein complex may comprise functional variances that enable response and adaptation to varying cellular conditions. Despite the biological importance of this layer of complexity, relatively little is known about the compositional heterogeneity of protein complexes, mostly due to technical barriers of studying such closely related species. Here, we show that native mass spectrometry (MS) offers a way to unravel this inherent heterogeneity of protein assemblies. Our approach relies on the advanced Orbitrap mass spectrometer capable of multistage MS analysis across all levels of protein organization. Specifically, we have implemented a two-step fragmentation process in the inject flatapole device, which was converted to a linear ion trap, and can now probe the intact protein complex assembly, through its constituent subunits, to the primary sequence of each protein. We demonstrate our approach on the yeast homotetrameric FBP1 complex, the rate-limiting enzyme in gluconeogenesis. We show that the complex responds differently to changes in growth conditions by tuning phosphorylation dynamics. Our methodology deciphers, on a single instrument and in a single measurement, the stoichiometry, kinetics, and exact position of modifications, contributing to the exposure of the multilevel diversity of protein complexes.


Assuntos
Frutose-Bifosfatase/química , Espectrometria de Massas/métodos , Proteínas de Saccharomyces cerevisiae/química , Fosforilação , Subunidades Proteicas/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...